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INTRODUCTION
Syphilis remains a significant concern for global health as it 

causes significant morbidity and mortality worldwide. The World 
Health Organization (WHO) estimated that global incidence of 
syphilis ranges between 5.6 and 11 million cases every year, while 
global prevalence is between 18 and 36 million cases(1,2). Although 
most cases occur in low- and middle-income countries, syphilis 
rates have been on the rise for years in high-income nations, pri-
marily among men who have sex with men (MSM), even though 
epidemiological trends show that the gap between MSM and the 
heterosexual population is reducing(3-8). It has also been calculated 
that about 1.4 million pregnant women worldwide acquire syphilis 
in a year. Congenital syphilis (CS), due to the ability of the syphi-
lis spirochete, Treponema pallidum subsp. pallidum (T. pallidum), 
to cross the placenta, causes an estimated ~300,000 annual cases of 
fetal loss or stillbirth and ~215,000 infants born prematurely and/or 
with clinical evidence of infection(9-11). In Brazil, according to Dos 
Santos et al.(12), the rate of acquired syphilis in 2017 was 81.4 cases 
per 100,000 population, representing a 561% increase compared to 
the reported rate of 12.3 cases per 100,000 population in 2011, while 
CS rates went from 2 cases per 1,000 live births in 2007 to stagger-
ing 9 cases per 1,000 live births in 2017, corresponding to a 338% 
increase. In the United States, the number of syphilis cases in 2020 
was the highest since 2000, confirming the resurgence trend seen in 
the past two decades(13). Public health initiatives to eliminate syphilis 

and CS led in the recent past by the Centers for Disease Control and 
Prevention (CDC) and WHO(14,15) have indeed contributed to reducing 
syphilis incidence but have not attained their intended elimination 
goals. The availability of an effective vaccine would significantly 
help global disease control.

In vitro isolation modern T. pallidum strains
T. pallidum strain isolation is still performed through rabbit intrat-

esticular injection with samples as diverse as blood, lesion exudates, 
cerebrospinal fluid (CSF), kidney and liver biopsies, amniotic fluid, 
and neonatal serum(16-20). Injections are generally performed using 
fresh samples to avoid pathogen cell loss due to freezing/thawing 
and maximize the chances of successful isolation, even though recent 
work demonstrated the rabbit-based isolation of new strains from 
cryopreserved lesion exudates(21). The possibility of freezing sam-
ples reduces the need for the clinical collection sites to be located 
near a research facility capable of housing rabbits in a Biosafety 
Level 2 environment.

However, strain isolation using rabbits has several major disad-
vantages, starting with the significant cost associated with animal 
purchase and husbandry, veterinary care, and the need for trained 
personnel for rabbit monitoring. Furthermore, the animal immune 
response to T. pallidum may result in pathogen clearance if strain 
harvest is not performed as soon as the rabbit develops orchitis or, 
in the absence of it, immediately after seroconversion. In the latter 
case, additional passages in the animal are generally necessary to 
expand the strain further. 

An alternative to sample inoculation into rabbits is offered by the 
cell culture system suitable for continuous in vitro propagation of T. 
pallidum used in our laboratory for testing of antibiotics to broaden 
the repertoire of therapeutic options available for syphilis and to 
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generate T. pallidum knockout mutants(22-26). This system has yet to 
be applied to T. pallidum isolation from clinical samples. Recently, 
however, we demonstrated that strain isolation is possible using this 
cultivation system and treponemes obtained after performing nee-
dle aspiration of experimental primary lesions, using either fresh 
or frozen/thawed specimens(27). Although preliminary, our study 
suggests that combining the cultivation system for T. pallidum and 
properly collected and stored samples from a patient could effec-
tively lead to isolating new T. pallidum strains without the need for 
rabbit inoculation. For laboratories already culturing T. pallidum, 
strain isolation using this approach would require minimal additional 
time and labor. Laboratories with tissue culture capabilities could 
implement this technique after acquiring a tri-gas incubator and a 
steady supply of nitrogen to achieve a microaerophilic environment 
that prevents T. pallidum from dying of oxidative stress. Soon, we 
will apply this procedure to clinical specimens, such as aspirates of 
secondary disseminated lesions collected after surface disinfection, 
to avoid sample contamination with the skin flora. 

Given that to date only a handful of laboratories worldwide have 
implemented the in vitro cultivation system for T. pallidum and that 
strains that are likely more valuable for vaccine development are 
those circulating in South America, Sub-Saharan Africa, and South-
East Asia, it would be desirable that key laboratories in countries in 
these regions develop the ability to cultivate the syphilis spirochete. 
This will create a very valuable repository of strains that could be 
used for genome sequencing and to challenge immunized animals 
in preclinical studies to evaluate the degree of protection a vaccine 
formulation achieves against diverse strains.

Genetic diversity of T. pallidum and vaccine development
Syphilis reverse vaccinology began with the elucidation of the 

Nichols strain genome in 1998(28). Examples of vaccine candidates 
that were identified and tested thanks to the application of bioinfor-
matics analyses to find putative surface-exposed antigens include 
conserved regions of the T. pallidum repeat antigen K (TprK; encoded 
by the tp0897 gene), the conserved amino-terminal portion of the 
TprC-I antigens (encoded by the tp0117, tp0131, tp0316, and tp0620 
genes), and the Tp0751 adhesin. Immunization with Tpr-based pep-
tides was shown to attenuate early lesion development and reduce the 
treponemal burden at injection sites following challenge(29-31), while 
Tp0751-immunized animals had significantly reduced T. pallidum 
dissemination to distant organs after infection(31,32). Vaccine formula-
tions based on Tpr and Tp0751 antigens constitute the hub of a two-
pronged approach to vaccine development that exploits the ability 
of these antigens to attenuate early manifestations (hence reducing 
the chances of transmission) and inhibit dissemination, which is 
associated with the most serious manifestations of the infection(31). 
At the same time, these early works highlighted the importance of 
sequencing genomes of syphilis strains to define the overall degree 
of genetic diversity in these genes. As complete and partial genomes 
from T. pallidum strains kept accumulating(33-35), it became clear that 
substantial diversity characterizes many T. pallidum genes-encod-
ing surface-exposed proteins. These genes have often been chal-
lenging to elucidate through whole-genome sequencing (WGS) 
because of the presence of repetitive sequences, particularly in the 

Tpr-encoding genes. Several ongoing initiatives are addressing the 
need for more (and complete) T. pallidum genomes. Genomes can 
now be sequenced directly from patient samples, thanks to the use of 
enrichment probes that can specifically capture the pathogen’s DNA 
and separate it from the host genome(33) or specific genome amplifi-
cation before high-throughput sequencing(36). These approaches not 
only eliminate the need for in vitro or rabbit propagation of a strain 
(unless an isolate is wanted) but also make possible the collection of 
samples from the most diverse geographical areas, particularly those 
where syphilis is endemic. Indeed, most T. pallidum genomes avail-
able today originate from Europe, North America, and Australia, 
and sampling in African, South American, and Asian countries 
must be increased. Furthermore, in addition to collecting swabs 
of syphilis genital and anal lesions, samples such as oral swabs 
(even in the absence of an obvious lesion) or saliva(37,38) have 
proven to be relatively good sources of treponemal cells for 
sequencing. These findings expand the range of collectible sam-
ples where enough T. pallidum DNA can be present (200–1,000 
genomes)(33) to perform WGS. Upon performing WGS, deposition 
of reads, assembled genomes, and non-identifying patient-associ-
ated clinical data in public repositories will enable more research-
ers to participate in vaccine development. Although it is possible 
that syphilis vaccine will need to be tailored to the genetic pedigree 
of the strains circulating in an area, evidence that there are only 
two clades (Nichols and SS14) of this pathogen circulating world-
wide and that T. pallidum strains continue to share more than 99% 
of their genomic identity (except for the hypervariable tprK gene) 
will greatly facilitate vaccine research. 

The accumulation of multiple genome sequences will also benefit 
the in silico structural analyses of the putative vaccine candidates to 
identify which regions of the antigen have the highest probability of 
being surface exposed. With one exception(39), no conclusive experi-
mental data exist on the structure of T. pallidum vaccine candidates. 
Although for many of these molecules the level of homology with 
other bacterial proteins is sufficient to generate high confidence 
models using bioinformatic tools(40), there is an ongoing debate con-
cerning the structure of Tpr antigens, mainly because the structure 
that is inferred from functional assays(41,42) differs significantly from 
that generated in silico(43). Therefore, refining the structural models 
for all T. pallidum putative vaccine candidates is a pivotal step for 
vaccine development. 

Monoclonal antibodies to pinpoint protective epitopes
Although not all, most of the antigens currently considered 

as vaccine candidates for syphilis are surface-exposed integral 
β-barrel outer membrane proteins (OMPs). These proteins range 
in size from 24 kDa for the 8-stranded β-barrel T. pallidum OmpW 
homolog Tp0126(44) to ~112 kDa for the Tp0515 protein, known as 
the T. pallidum LptD homolog. Structural predictions suggest that 
only a small portion of all these OMPs is surface exposed, mainly 
corresponding to the loops that connect adjacent β-sheets embed-
ded in the outer membrane, which are necessarily exposed at the 
host-pathogen interface. It is plausible to assume that protective 
epitopes associated with these proteins would map to a subset 
of these loops that represent the most likely targets for opsonic 
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antibodies. A current strategy to identify protective epitopes to 
use instead of full-length T. pallidum OMPs, which are difficult 
to express, purify, and maintain in aqueous solutions, involves 
the isolation of monoclonal antibodies (mAbs) following animal 
immunization with a vaccine candidate and their testing using 
in vitro phagocytosis assays to assess their ability to opsonize T. 
pallidum. Upon the identification of a sufficient number of such 
epitopes, chimeric constructs based on protein scaffolding (e.g., 
viral-like particles) or chimeric concatemers that are amenable 
to large-scale production could provide a vaccine design able to 
transition into clinical trials.

Genetic engineering to identify essential surface antigens
We recently reported the first successful genetic engineering 

experiment of T. pallidum. In this initial work, we eliminated a T. 
pallidum pseudogene to provide a proof of concept that knockout 
mutants could be derived. Our many attempts to ablate the OMP-
encoding tprK open reading frame, however, were constantly 
unsuccessful, which led to the hypothesis that tprK is an essential 
gene of the syphilis spirochete. This hypothesis is also indirectly 
supported by the evidence that high-throughput tprK sequencing 
never yielded a variant carrying an early termination due to the 
introduction of a stop codon or a frameshift mutation, despite the 
continuous recombination events that occur to create variability in 
this gene(45-47). A vaccine design based on a surface-exposed anti-
gen that mediates crucial functions in T. pallidum biology could be 
more valuable than a design based on a nonessential gene, whose 
function could be redundant. Work to define the “essential” rep-
ertoire of surface-exposed antigens and their function using func-
tional genomics approaches might also accelerate vaccine devel-
opment. To this end, the development of novel genetic tools such 
as inducible systems to attain knockdown mutants and transposon 
mutagenesis is highly desirable.

Concluding remarks
This short article highlighted some of the strategies currently seen 

as pivotal for syphilis vaccine development. Additional strategies 
and topics of equal importance that are not discussed here include 
1. the choice of adjuvant, which necessarily must be approved for 

human use and foster a Th1 response to facilitate phagocytosis 
of opsonized T. pallidum cells(48-52); 

2. platforms to deliver the protective antigens or epitopes, includ-
ing RNA-based vaccines; 

3. the level of protection that must be associated with vaccination; 
4. the possibility that vaccination might interfere with some trepo-

nemal diagnostic tests; and 
5. populations that should be given priority for vaccination.

Although syphilis testing and treatment are available and afford-
able, and the threat of antibiotic resistance is only marginal for the 
syphilis spirochete, syphilis control has remained challenging, and 
the years of life lost due to congenital transmission are significant(53). 
A vaccine that can reduce syphilis incidence, particularly congenital 
infection, could make a substantial difference in public health and, 
in particular, maternal health.
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